

UST Global Internship ETRI-ICT Laboratory

Intern:

Professor: Bongki Mheen

CONTENTS

Introduction
- 3
Packet Differences
5
Requirements and Process
6
Video playable, color mapped and 3D
11
Conclusion
- 12
Q&A
13

INTRODUCTIO

Laser Radars are used for scanning the surroundings and providing 3D representation of the scanned area

In order to scan and visualize the surroundings Laser Radar's or LIDARs consist of 2 parts:

- 1. LIDAR itself
- 2. Software to visualize it

INTRODUCTIO

Issue: The Software developed to visualize data from ETRI-STUD LIDAR

has issues

Solution: Use open source software for visualization

VeloView is open source software developed by Kitware to visualize data received from Velodyne LIDARs

However, Velodyne LIDARs data packet is different from ETRI-STUD LIDAR packet, which makes us unable to use it directly

Packet Differences Velodyne LIDAR(VLP-16)

- rotational
- azimuth for calculating 3D points
- multiple number of lasers (16)
- tail bytes are used for

timactama and idantification

ETRI-STUD LIDAR

- stationary
- no need for azimuth
- single laser
- tail bytes are used for frame counting and

REQUIREMENTS AND PROCESS

Task: In order to visualize the data from ETRI-STUD LIDAR the source code of VeloView must be modified and adapt to packets with different data structure

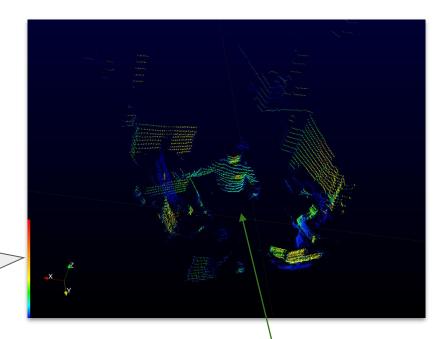
RESEARCH

PLAN				
Compile	Visualize	Analyze	Modify	Visualize
Compile the source code to check if it works	VLP-16 and	Analyze the code and find the part responsible for	Modify the required functions to adapt to ETRI-	Visualize ETRI- STUD LIDAR data
WOTKS	works correctly	•	STUD LIDAR	6

Compile Visualize

Instructions:

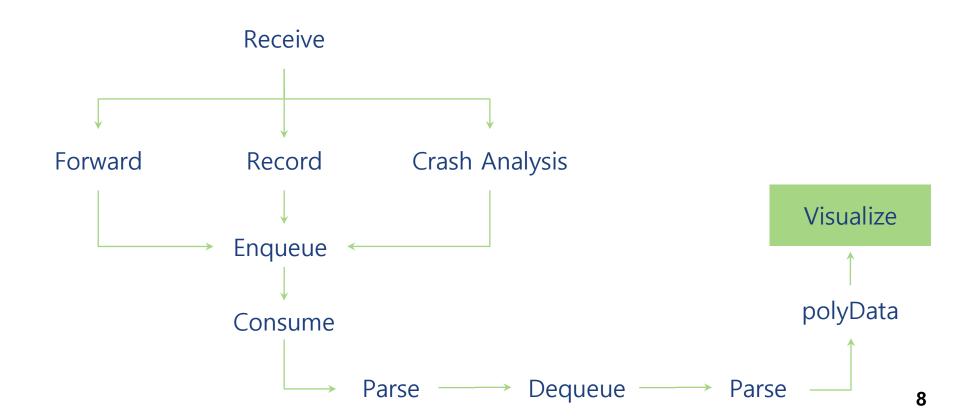
Set environment


Compile

Run

Visualize

VLP-16



M

7

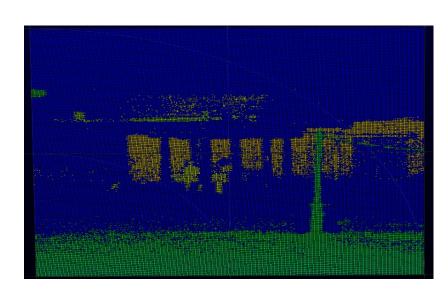
Analyze

Modify

Visualize

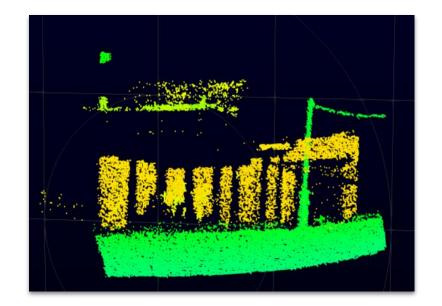
Modify:

- The algorithm for computing the 3D coordinates was designed and implemented
- The software adapted to interpret the data of ETRI-STUD LIDAR


Visualize:

 Below are the photographic and scanned returns

Photo Obtained



Video playable, color mapped and 3D

https://youtu.be/cgWKWJbDL2s

CONCLUSION

All the requirements are met, the software is adapted to interpret ETRI-STUD LIDAR data

Special thanks to UST for opportunity, my lab mates for warm attitude and professor Bongki Mheen for thorough inspection of my progress, answering my questions and making sure I am focused well

Q & A